356 research outputs found

    Inconsistency of Bayesian Inference for Misspecified Linear Models, and a Proposal for Repairing It

    Get PDF
    We empirically show that Bayesian inference can be inconsistent under misspecification in simple linear regression problems, both in a model averaging/selection and in a Bayesian ridge regression setting. We use the standard linear model, which assumes homoskedasticity, whereas the data are heteroskedastic, and observe that the posterior puts its mass on ever more high-dimensional models as the sample size increases. To remedy the problem, we equip the likelihood in Bayes' theorem with an exponent called the learning rate, and we propose the Safe Bayesian method to learn the learning rate from the data. SafeBayes tends to select small learning rates as soon the standard posterior is not `cumulatively concentrated', and its results on our data are quite encouraging.Comment: 70 pages, 20 figure

    A Tight Excess Risk Bound via a Unified PAC-Bayesian-Rademacher-Shtarkov-MDL Complexity

    Get PDF
    We present a novel notion of complexity that interpolates between and generalizes some classic existing complexity notions in learning theory: for estimators like empirical risk minimization (ERM) with arbitrary bounded losses, it is upper bounded in terms of data-independent Rademacher complexity; for generalized Bayesian estimators, it is upper bounded by the data-dependent information complexity (also known as stochastic or PAC-Bayesian, KL(posterior∄⁥prior)\mathrm{KL}(\text{posterior} \operatorname{\|} \text{prior}) complexity. For (penalized) ERM, the new complexity reduces to (generalized) normalized maximum likelihood (NML) complexity, i.e. a minimax log-loss individual-sequence regret. Our first main result bounds excess risk in terms of the new complexity. Our second main result links the new complexity via Rademacher complexity to L2(P)L_2(P) entropy, thereby generalizing earlier results of Opper, Haussler, Lugosi, and Cesa-Bianchi who did the log-loss case with L∞L_\infty. Together, these results recover optimal bounds for VC- and large (polynomial entropy) classes, replacing localized Rademacher complexity by a simpler analysis which almost completely separates the two aspects that determine the achievable rates: 'easiness' (Bernstein) conditions and model complexity.Comment: 38 page

    Almost the Best of Three Worlds: Risk, Consistency and Optional Stopping for the Switch Criterion in Nested Model Selection

    Get PDF
    We study the switch distribution, introduced by Van Erven et al. (2012), applied to model selection and subsequent estimation. While switching was known to be strongly consistent, here we show that it achieves minimax optimal parametric risk rates up to a log⁥log⁥n\log\log n factor when comparing two nested exponential families, partially confirming a conjecture by Lauritzen (2012) and Cavanaugh (2012) that switching behaves asymptotically like the Hannan-Quinn criterion. Moreover, like Bayes factor model selection but unlike standard significance testing, when one of the models represents a simple hypothesis, the switch criterion defines a robust null hypothesis test, meaning that its Type-I error probability can be bounded irrespective of the stopping rule. Hence, switching is consistent, insensitive to optional stopping and almost minimax risk optimal, showing that, Yang's (2005) impossibility result notwithstanding, it is possible to `almost' combine the strengths of AIC and Bayes factor model selection.Comment: To appear in Statistica Sinic

    Optional Stopping with Bayes Factors: a categorization and extension of folklore results, with an application to invariant situations

    Get PDF
    It is often claimed that Bayesian methods, in particular Bayes factor methods for hypothesis testing, can deal with optional stopping. We first give an overview, using elementary probability theory, of three different mathematical meanings that various authors give to this claim: (1) stopping rule independence, (2) posterior calibration and (3) (semi-) frequentist robustness to optional stopping. We then prove theorems to the effect that these claims do indeed hold in a general measure-theoretic setting. For claims of type (2) and (3), such results are new. By allowing for non-integrable measures based on improper priors, we obtain particularly strong results for the practically important case of models with nuisance parameters satisfying a group invariance (such as location or scale). We also discuss the practical relevance of (1)--(3), and conclude that whether Bayes factor methods actually perform well under optional stopping crucially depends on details of models, priors and the goal of the analysis.Comment: 29 page

    Beyond Neyman-Pearson

    Full text link
    A standard practice in statistical hypothesis testing is to mention the p-value alongside the accept/reject decision. We show the advantages of mentioning an e-value instead. With p-values, we cannot use an extreme observation (e.g. pâ‰Șαp \ll \alpha) for getting better frequentist decisions. With e-values it is straightforward, since they provide Type-I risk control in a generalized Neyman-Pearson setting with the decision task (a general loss function) determined post-hoc, after observation of the data -- thereby providing a handle on `roving α\alpha's'. When Type-II risks are taken into consideration, the only admissible decision rules in the post-hoc setting turn out to be e-value-based. Similarly, if the loss incurred when specifying a faulty confidence interval is not fixed in advance, standard confidence intervals and distributions may fail whereas e-confidence sets and e-posteriors still provide valid risk guarantees.Comment: Second, thoroughly revised version. Part of the material in the first version has moved to another paper, "The E-Posterior", to appear in Phil. Trans. Royal Soc. of London Series

    Combining Adversarial Guarantees and Stochastic Fast Rates in Online Learning

    Get PDF
    We consider online learning algorithms that guarantee worst-case regret rates in adversarial environments (so they can be deployed safely and will perform robustly), yet adapt optimally to favorable stochastic environments (so they will perform well in a variety of settings of practical importance). We quantify the friendliness of stochastic environments by means of the well-known Bernstein (a.k.a. generalized Tsybakov margin) condition. For two recent algorithms (Squint for the Hedge setting and MetaGrad for online convex optimization) we show that the particular form of their data-dependent individual-sequence regret guarantees implies that they adapt automatically to the Bernstein parameters of the stochastic environment. We prove that these algorithms attain fast rates in their respective settings both in expectation and with high probability

    Contextuality of misspecification and data-dependent losses

    Get PDF
    Analysis and Stochastic

    The minimum description length principle

    Get PDF
    The pdf file in the repository consists only if the preface, foreword and chapter 1; I am not allowed by the publisher to put the remainder of this book on the web. If you are a member of the CWI evaluation committee and yu read this: you are of course entitled to access the full book. If you would like to see it, please contact CWI (or, even easier, contact me directly), and we will be happy to give you a copy of the book for free
    • 

    corecore